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Abstract— Often adaptive, distributed control can be viewed
as an iterated game between independent players. The cou-
pling between the players’ mixed strategies, arising as the
system evolves from one instant to the next, is determined
by the system designer. Information theory tells us that the
most likely joint strategy of the players, given a value of the
expectation of the overall control objective function, is the
minimizer of a Lagrangian function of the joint strategy. So
the goal of the system designer is to speed evolution of the
joint strategy to that Lagrangian minimizing point, lower the
expectated value of the control objective function, and repeat.
Here we elaborate the theory of algorithms that do this using
local descent procedures, and that thereby achieve efficient,
adaptive, distributed control.

I. INTRODUCTION

It turns out that one can translate many of the probability-
based concepts from statistical physics, game theory, dis-
tributed optimization and distributed control into one an-
other. This translation allows one to transfer theory and
techniques between those fields, creating a large common
mathematics that connects them. This common mathematics
is known as Probability Collectives. It concerns the set of
probability distributions that govern any distributed system,
and how to manipulate those distributions to optimize one
or more objective functions [1].

This paper motivates Probability Collectives as a first-
principles approach to adaptive distributed control problems
[2], [3], [4]. To do this we represent such problems by
having each control agent i set its state xt

i ∈ X independently
of the other agents at each time t, by sampling an associ-
ated distribution, qt

i(xt
i). In this representation the coupling

between the agents does not arise directly, via statistical
dependencies of the agents’ states at the same time t. Rather
it arises indirectly, through the stochastic joint evolution of
their distributions {qt

i} across time.
More formally, let time be discrete, where at the be-

ginning of each t all control agents simultaneously and
independently set their states (“make their moves”) by
sampling their associated distributions. After they do so any
remaining portions of the system (i.e., any stochastic part
not being directly set by the control agents) responds to that
joint move. Indicate the state of the entire system at time t
as zt. (zt includes the joint move of the agents, xt, as well
as the state at t of all stochastic elements not directly set
by the agents.) So the joint distribution of the moves of the
agents at any moment t is given by the product distribution
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qt(xt) =
∏

i qt
i(xt

i), and the state of the entire system, given
joint move xt, is governed by P(zt | xt).

Now in general the observations by agent i of aspects of
the system’s state at times previous to t will determine qt

i.
In turn, those observations are determined by the previous
states of the system. So qt

i is statistically dependent on
the previous states of the entire system, z{t

′<t}. Accordingly,
the system can be viewed as a multi-stage noncooperative
game among the agents and Nature. Each agent plays mixed
strategies {qt

i} at moment t, and Nature’s move space at
that time consists of those components of the vector zt not
contained in xt [5], [6], [7], [8], [9]. The interdependence
of the agents across time can be viewed as arising through
information sets and the like, as usual in game theory.

For pedagogical simplicity, consider the problem of
inducing an optimal state z rather than the problem of
inducing an optimal sequence of states.1 What the designer
of the system can specify are the laws that govern how the
joint mixed strategy qt gets updated from one stage of the
game to the next. The goal is to specify such laws that
will quickly lead to a good value of an overall objective
function of the state of the system, F(z).2 Note that the
agents work in the space X; all aspects of the system
not directly set by the agents, and in particular all noise
processes, are implicitly contained in the distribution P(z |
x). Tautologically then, in distributed control the goal is to
induce a joint strategy q(x) with a good associated value of
Eq(F) =

∫

dxq(x)E(F | x) ,
∫

dxq(x)G(x) = Eq(G).3 Once
such a q is found, one can sample it to get a final x, and
be assured that, on average, the associated F value is low.
G is called the world utility.

In this paper we elaborate an iterative scheme for updat-
ing product distributions q to monotonically lower Eq(G).
Each q in the sequence is defined indirectly, as the min-
imizer of a different G-parameterized Lagrangian, LG(q).
Implementing such a sequence of Lagrangian-minimizing
q’s results in the optimal control policy for the distributed
system, i.e., in the q minimizing Eq(G). However while
one cannot directly solve for the q minimizing Eq(G) in
a distributed manner, as elaborated below one can solve for
the q minimizing each LG(q) in a distributed manner. In
this way one can find the optimal distributed control policy
using a purely distributed algorithm.

The distributed algorithms presented here are all based

1See [10] for a discussion of the problem of optimizing a sequence.
2Here we follow the convention that lower F is better. In addition, for

simplicity we only consider objectives that depend on the state of the
system at a single instant; it is straightforward to relax this restriction.

3For simplicity, here we indicate integrals of any sort, including point
sums for countable X, with the

∫

symbol.



on using steepest descent-type techniques to minimize each
successve Lagrangian.4 Because the descent is over Eu-
clidean vectors q, these algorithms can be applied whether
the xi are categorical/symbolic, continuous, time-extended,
or a mixture of the three. So in particular, they provide
a principled way to do “gradient descent over categorical
variables”.

In the next section we derive the functional form of the
Lagrangians LG(q) and discuss some of its properties.

In the following section we show how to apply gradient
descent (and its embellishments) to optimize the Lagrangian
in a distributed fashion. If we view the agents as engaged
in a team game, all having the same utility G, then this
gradient descent is a distributed scheme for each agent to
update its strategy, in a way that will steer the game to a
bounded rational equilibrium [1], [11].

In this section we also consider second order methods.
In contrast to gradient descent, in general any single appli-
cation of Newton’s method to update a product distribution
q will result in a new distribution pq that is not a product
distribution. So we must instead solve for the product distri-
bution q′(pq) having minimal Kullback-Leibler distance to
pq. In this section we derive the rule for iterative updating
of our distribution so as to move q in the direction of
q′(pq). Serendipitously, this rule can also be implemented
in a distributed fashion.

In practice any local descent scheme often requires
Monte Carlo sampling to estimate terms in the gradient.
To minimize the expected quadratic error of the estimation,
typically the game is changed from being a team game.
In other words, in general changing the agent’s utilities gi

to not all equal G will result in lower bias plus variance
of the estimation of the gradient, and therefore will speed
evolution to a good joint strategy. There are many other
techniques as well for improving the Monte Carlo sampling.
These include data-aging, and techniques for managing the
descent when it gets close to a border of the space of
product distributions. Most of these techniques can be used
even with schemes for minimizing LG(q) other than gradient
descent. These are cursorily discussed at the end of this
section. See[13], [16] for more details.

In the final section we introduce some alternatives to
LG(q), designed to help speed convergence to a q with low
E(G). Miscellaneous proofs can be found in the appendix.

The version of Probability Collectives considered in this
paper, involving product distributions, is called “Product
Distribution” (PD) theory[13]. Some initial experimental
results concerning the use of PD theory for distributed
optimization and distributed control can be found in [17],
[18], [19], [20], [21], [22]. See [15], [12], [10] for other
uses and extensions of PD theory.

4See [11], [12], [13], [14] for non-local techniques for finding qt ,
techniques that are related to ficticious play, and see [15] for techniques
that exploit the Metropolis-Hastings algorithm. Other non-local techniques
are related to importance sampling of integrals, and are briefly mentioned
in [1].

II. P D L

A. The Maxent Lagrangian

Say the designer stipulates a particular desired value of
E(G), γ. For simplicity, consider the case where the designer
makes no other claims concerning the system besides γ and
the fact that the joint strategy is a product distribution. Then
information theory tells us that the a priori most likely q
consistent with that information is the one that maximizes
entropy subject to that information [23], [24], [25].5 In other
words, of all distributions that agree with the designer’s
information, that distribution is the “easiest” one to induce
by random search.

Given this, one can view the job of the designer of
a distributed control system as an iterative equilibration
process. In the first stage of each iteration the designer
works to speed evolution of the joint strategy to the q with
maximal entropy subject to a particular value of γ. Once
we have found such a solution we can replace the constraint
— replace the target value of E(G) — with a more difficult
one, and then repeat the process, with another evolution of
q [13].

To formalize this, define the Maxent Lagrangian by

L(q) , Lγ(q) , β(Eq(G) − γ) − S (q)

= β(
∫

dxq(x)G(x) − γ) − S (q) (1)

where S (q) is the Shannon entropy of q, −
∫

dxq(x)ln q(x)
µ(x) ,

and for simplicity we here take the prior µ to be uniform.6.
Given γ, the associated most likely joint strategy is the q that
minimizes L(q) over all those (q, β) such that the Lagrange
parameter β is at a critical point of Lγ, i.e., such that ∂L

∂β
= 0.

Solving, we find that the qi are related to each other via
a set of coupled Boltzmann equations (one for each agent
i),

qβi (xi) ∝ e
−βE

q
β
(i)

(G|xi)
(2)

where the overall proportionality constant for each i is set
by normalization, the subscript qβ(i) on the expectation value
indicates that it is evaluated according to the distribution
∏

j,i q j, and β is set to enforce the condition Eqβ (G) = γ.
Following Nash, we can use Brouwer’s fixed point theorem
to establish that for any fixed β, there must exist at least
one solution to this set of simultaneous equations.

In light of the foregoing, one natural choice for an
algorithm that lowers Eq(G) is the repeated iteration of the
following step: Start with the qβ matching a current γ value,
then lower γ slightly, and end by modifying the old qβ to

5In light of how limited the information is here, the algorithms presented
below are best-suited to “off the shelf” uses; incorporating more prior
knowledge allows the algorithms to be tailored more tightly to a particular
application.

6Throughout this paper the terms in any Lagrangian that restrict distri-
butions to the unit simplices are implicit. The other constraint needed for
a Euclidean vector to be a valid probability distribution is that none of its
components are negative. This will not need to be explicitly enforced in
the Lagrangian here.



find the one that matches the new γ. A difficulty with this
iterative step is the need to solve for β as a function of
γ. However we can use a trick to circumvent this need.
Typically if we evaluate E(G) at the solutions qβ, we find
that it is a declining function of β. So in following the
iterative procedure of equilibrating and then lowering γ

we will raise β. Accordingly, we can avoid the repeated
matching of β to each successive constraint E(G) = γ,
and simply monotonically increase β instead. This allows
us to avoid ever explicitly specifying the values of γ (see
appendix).

An alternative interpretation of this iterative scheme is
based on prior knowledge of the value of the entropy rather
of the expected G. Given this alternative prior knowledge,
we can recast the designer’s goal as finding the q that
is consistent with that knowledge that has minimal E(G).
This again leads to Eq.’s 1 and 2. Now raising β is
cast as lowering the (never-specified) prior knowledge of
the entropy value rather than the (never-specified) prior
knowledge of E(G).

Simulated annealing is an example of this approach,
where rather than work directly with q, one works with
random samples of it formed via the Metropolis random
walk algorithm [26], [27], [28], [29]. There is no a priori
reason to use such an inefficient means of manipulating q
however. Here we will work with q directly instead. This
will result in an algorithm that is not simply “probabilistic”
in the sense that the updating of its variables is stochastic
(as in simulated annealing). Rather the very entity being
updated is a probability distribution.

Another advantage of casting the problem directly in
terms of the Maxent Lagrangian is that one can even avoid
the need to explicitly stipulate an annealing schedule. In
the usual way, first order methods can be used to find the
saddle point of the Lagrangian, e.g., by performing steepest
ascent of L in the Lagrange parameter β while performing
a descent in q 7.

In many situations one should use a modification of
the Maxent Lagrangian. Whenever one has extra prior
knowledge about the problem domain, that should be used
to modify the use of entropy as (in statistics terminology)
a regularizer. This leads to Bayesian formulations [30].
Similarly, if one has constraints { fi(x) = 0}, the Lagrangian
has to be modified to account for them. The most naive way
of doing this is to simply cast the constraints as Lagrange
penalty terms {E( fi) = 0} and add those terms to the
Lagrangian, in the usual way [30], [22] 8.

7Formally, since the Maxent Lagrangian is not convex, we have no
guarantee that the duality gap is zero, and therefore no guarantee about
saddlepoints. Nonetheless, just as in other domains, first order methods
here seem to work well in practice.

8Note though that since the gradient of entropy is infinite at the border
of the unit simplex, we are guaranteed that no component of q will ever
exactly equal 0, which typically means that the constraints { fi(x) = 0} will
never be satisfied with probability exactly 1.

B. Geometry of the Maxent Lagrangian

To investigate the geometry of the Maxent Lagrangian
we must be careful to distinguish between the various
possible parameterizations of distributions. To begin, let P
be the space of distributions (product or otherwise) over our
variables. In addition define Q ⊂ P as the set of product
distributions over X. Also for all i = 1, . . . ..., n, define o(Xi)
as the number of possible values xi (for simplicity taken
to be finite), and write o(X) =

∏

i o(Xi). So the simplex
P ⊂ R

o(X)
+ .

Let t be an arbitrary element of Ro(X)
+ , not necessarily

normalized. The entropy with its domain extended to all t,
−

∫

dx t(x)lnt(x), is a concave function over Ro(X)
+ . Therefore

it is also concave over any subset of Ro(X)
+ , and in particular

the entropy of normalized vectors p ∈ P with components
p(x) is concave. In addition

∫

dx G(x)t(x) is a convex
function of t. So the Maxent Lagrangian L(p ∈ P) is a
convex function. Since P is a convex space, this means the
Maxent Lagrangian has at most one minimum over P.

However we are restricting attention to Q (to reduce the
number of parameters we’re going to be using, if for no
other reason). In general this is not a convex subspace of
P; if p ∈ Q and p′ ∈ Q, then distributions on the line
connecting p and p′ will still lie in P but may not lie in Q.
So even though the Maxent Lagrangian is convex over Q,
we do not have guarantees of a single local minimum.

There are other ways to parameterize product distri-
butions however rather than as points in P ⊂ Ro(X)

+ . In
particular, consider the space R

∑

i o(Xi)
+ . The most appropriate

way to express a product distribution q is as a vector in
this space, since that way we can assign each separate
distribution qi to a different set of components. For example,
we can parameterize any q ∈ Q using R

∑

i o(Xi)
+ via the Naive

Distributed Parameterization (NDP), q(x) =
∏

i qi(xi).
Note that this parameterization of Q is many-to-one.9

Unlike when it is parameterized as a subset of Ro(X)
+ , Q is

convex when parameterized as a subset of Ro(Xi)
+ under the

NDP; it is the set of {qi} such that
∫

dxi qi(xi) = 1 ∀i, i.e.,
the n-fold Cartesian product of unit simplices. In addition,
say we express the entropy via the NDP as S ({qi}) =
−

∫

dx [
∏

i qi(xi)]ln[
∏

i qi(xi)]. If we restrict each qi to be
normalized, then S ({qi}) = −

∑

i

∫

dxi qi(xi)ln(qi(xi)), and is
concave, as before.

As an aside, note that if we allow {qi} to range over all
R

∑

i o(Xi)
+ , then the extension of entropy as just defined is not

concave in general (unlike in the case for the extension of
the definition of entropy of points p ∈ calP. In general,

−

∫

dx [
∏

i

qi(xi)]ln[
∏

i

qi(xi)] , −
∑

i

∫

dxi qi(xi)ln(qi(xi))

9In particular, a vector ~q ∈ R
∑

i o(Xi)
+ with components ~qx may obey

∑

x ~qx = 1 even though for some i-specified subset of components, {~qxi },
∑

xi
~qxi , 1. As an example, say we have two agents each of whom

can make two moves. Then both [q1 = (2/3, 1/3), q2 = (1/2, 1/2)] and
[q1 = (2, 1), q2 = (1/6, 1/6)] have the same image under the NDP,
q = (1/3, 1/3, 1/6, 1/6).



for non-normalized {qi}, the Hessian of S has off-diagonal
entries, and its eigenvalues can have mixed signs. To avoid
ever confronting this issue, it is expedient to simply choose
a different way of extending the domain of the entropy
function under the NDP, namely

S ({qi}) , −
∑

i

∫

dxi qi(xi)ln(qi(xi)).

Return now to the issue of the convexity of our particular
(normalized distributions) optimization problem under the
NDP. While with the NDP our feasible set is convex as
desired, and the entropy term of the Maxent Lagrangian
is concave as desired, now expected G presents problems:
∫

dx G(x)
∏

i qi(xi) is a multilinear function of the compo-
nents of {qi}, and therefore is not convex.

We can fix this while still using the space R
∑

i o(Xi)
+ , so long

as we change from the NDP. For example, since geometric
means are concave functions,

∫

dx
∏

i[ri(xi)]1/nG(x) is a
convex function of {ri}, so long as G(x) ≤ 0 ∀x. Unfortu-
nately, in this new parameterization the subtracted entropy
term in the Lagrangian,

∑

i

∫

dxi [ri(xi)]1/nln([ri(xi)]1/n), is
concave rather than convex. A more important problem is
that the set of r such that

∏

i[ri(xi)]1/n is normalized is not
convex. So for simplicity, from now on we will use the
NDP, and write “q” as shorthand for {qi}.

Consider L as a function of q, with β and γ both treated
as fixed parameters. (So in particular, Eq(g) need not equal
γ.) First, say that q(i) is also held fixed, with only qi allowed
to vary. This makes E(g) linear in qi. In addition, entropy
is a concave function, and the unit simplex is a convex
region. Accordingly, the Lagrangian of Eq. 1 has a unique
local minimum over qi; there is no problem of “getting
trapped in a local minimum” in a computational search for
that minimum. Indeed, in this situation we can just jump
directly to that global optimum, via Eq. 2.

Now introduce the shorthand for any function U(x),

[U]i,p(xi) ,
∫

dx(i)U(xi, x(i))p(x(i) | xi).

So [G]i,q(i) (xi) is agent i’s “effective” cost function, Eq(i) (G |
xi). Consider the value Eqβi

([G]i,q(i) ). This is the value of
E(G) at i’s bounded rational equilibrium for the fixed
q(i), i.e., it is the value at the minimum over qi of L.
View that value as a function of β. One can show that
this is a decreasing function. In fact, its derivative just
equals the negative of the variance of [G]i,q(i) (xi) evaluated
under distribution qβi (xi) (see appendix). Combining this
with the fact that E(G) is bounded below (for bounded
G), establishes that the variance must go to zero for large
enough β. So as β grows, qβi (xi) → 0 for all xi that don’t
minimize Eq(i) (G | xi). In other words, in that limit, qi

becomes Nash-optimal.
The following lemma extends the technique of Lagrange

parameters to off-equilibrium points:

Lemma 1: Let y′ ∈ Rn be a point consistent with a set
of constraints over Rn, { fi(y) = 0}. Consider the set of all
vectors leading from y′ that are, to first order, consistent
with those constraints. Of those vectors, the one giving the
steepest ascent of a function V(y) is ~u = ∇V +

∑

i λi(y′)∇ fi,
up to an overall proportionality constant, where the λi(y′)
enforce the first order consistency conditions, ~u·∇ fi = 0 ∀i.

Now examine the derivatives of S (q) with respect to all
components of q, i.e., the q-gradient of the entropy. At
the border of Q, at least one of the ln(qi) terms in those
derivatives will be negative infinite. As explained in the
appendix, combined with Lemma 1, this fact establishes
that at the edge of Q, the steepest descent direction of any
player’s Lagrangian points into the interior of Q (assuming
finite β and {G}). (This is reflected in the equilibrium
solutions Eq. 2.) Accordingly, whereas Nash equilibria
can be on the edge of Q (e.g., for a pure strategy Nash
equilibrium), in bounded rational games any equilibrium
must lie in the interior of Q. In other words, any equilibrium
(i.e., any local minimum) of a bounded rational game has
non-zero probability for all joint moves. So just as when
only varying a single qi, we never have to consider extremal
mixed strategies in searching for equilibria over all Q. We
can use local descent schemes instead [17], [21], [30].

Lemma 1 can also be used to construct G with more
than one solution to Eq. 2. One can also show that for
every player i and any point q interior to Q, there are
directions in Q along which i’s Lagrangian is locally convex.
Accordingly, no player’s Lagrangian has a local maximum
interior to Q. So if there are multiple local minima of
i’s Lagrangian, they are separated by saddle points across
ridges. In addition, the uniform q is a solution to the set
of coupled equations Eq. 2, but typically is not a local
minimum, and therefore must be a saddle point.

Say that we were not restricting ourselves to product
distributions. So the Lagrangian becomes L(p) = β(Ep(G)−
γ)−S (p), where p can now be any distribution over x. There
is only one local minimum over p of this Lagrangian, the
canonical ensemble:

pβ(x) ∝ e−βG(x)

In general pβ is not a product distribution. However we can
ask what product distribution is closest to it.

Now in general, the proper way to approximate a target
distribution p with a distribution from a subset C of the
set of all distributions is to first specify a misfit measure
saying how well each member of C approximates p, and
then solve for the member with the smallest misfit. This is
just as true when C is the set of all product distributions as
when it is any other set.

How best to measure distances between probability distri-
butions is a topic of ongoing controversy and research [31].
The most common way to do so is with the infinite limit
log likelihood of data being generated by one distribution



but misattributed to have come from the other. This is know
as the Kullback-Leibler distance [23], [32], [24]:

KL(p1 || p2) , S (p1 || p2) − S (p1) (3)

where S (p1 || p2) , −
∫

dx p1(x)ln[ p2(x)
µ(x) ] is known as the

cross entropy from p1 to p2 (and as usual we implicitly
choose uniform µ).

The KL distance is always non-negative, and equals zero
iff its two arguments are identical. In addition, KL(αp1+(1−
α)p2 || p2) is an increasing function of α ∈ [0.0, 1.0], i.e.,
as one moves along the line from p1 to p2, the KL distance
from p1 to p2 shrinks.10 The same is true for KL(p2 || αp1+

(1−α)p2). In addition, those two KL distances are identical
to 2nd order about α = 0. However they differ as one moves
away from α = 0 in general; KL distance is not a symmetric
function of its arguments. In addition, it does not obey the
triangle inequality, although it obeys a variant [23]. Despite
these shortcomings, it is by far the most common way to
measure the distance between two distributions.

As shorthand, define the “pq distance” as KL(p || q),
and the “qp distance” as KL(q || p), where p is our
target distribution and q is a product distribution. Then it
is straightforward to show that the qp distance from q to
target distribution pβ is just the Maxent Lagrangian L(q),
up to irrelevant overall constants. In other words, the q
minimizing the Maxent Lagrangian is q with the minimal
qp distance to the associated canonical ensemble.

However the qp distance is the (infinite limit of the
negative log of) the likelihood that distribution p would
attribute to data generated by distribution q. It can be argued
that a better measure of how well q approximates p would
be based on the likelihood that q attributes to data generated
by p. This is the pq distance; it gives a different Lagrangian
from that of Eq. 1.

Evaluating, up to an overall additive constant (of the
canonical distribution’s entropy), the pq distance is

KL(p || q) = −
∑

i

∫

dx p(x)ln[qi(xi)].

This is equivalent to a game where each coordinate i has
the “Lagrangian”

L∗
i (q) , −

∫

dxi pi(xi)ln[qi(i)], (4)

where pi(xi) is the marginal distribution
∫

dx(i) p(x). The
minimizer of this is just qi = pi ∀i, i.e., each qi is set to the
associated marginal distribution of p.

In most of this paper we restrict attention to the qp KL
distance and associated Maxent Lagrangian.

10This follows from the fact that the second derivative with respect to α
is non-negative for all α, combined with the fact that KL distance is never
negative and equals 0 when α = 0.

III. D  M L

A. Gradient descent

Consider the situation where each xi can take on a finite
number of possible values, |Xi|. Say we are iteratively
evolving q to minimize L for some fixed β, and are currently
at some point q ∈ Q. Using Lemma 1, we can evaluate the
direction from q within Q that, to first order, will result in
the largest drop in the value of L(q):

∂RL(q)
∂Rqi(xi = j)

= ui( j) −
∑

x′i

ui(x′i )/|Xi|, (5)

where ui( j) , βE(G | xi = j) + ln[qi( j)], and the symbol ∂R

indicates that we do not mean the indicated partial deriva-
tive, formally speaking, but rather the indicated component
of the 1st-order descent vector 11 Intuitively, the reason for
subtracting

∑

x′i
ui(x′i )/|Xi| is to keep the distribution in the

set of all possible probability distributions over x, P. By
Lemma 1, the update step must use such subtraction of a
normalization vector. In particular, it is not correct to get
back to the space of probability distributions by multiplying
by an overall normalization constant.

Eq. 5 specifies the change that each agent should make
to its distribution to have them jointly implement a step in
steepest descent of the Maxent Lagrangian. These updates
are completely distributed, in the sense that each agent’s
update at time t is independent of any other agents’ update
at that time. Typically at any t each agent i knows qi(t)
exactly, and therefore knows ln[qi( j)]. However often it will
not know G and/or the q(i). In such cases it will not be able
to evaluate the E(G | xi = j) terms in Eq. 5 in closed form.

One way to circumvent this problem is to have those
expectation values be simultaneously estimated by all agents
by repeated Monte Carlo sampling of q to produce a set of
(x,G(x)) pairs. Those pairs can then be used by each agent
i to estimate the values E(G | xi = j), and therefore how
it should update its distribution. In the simplest version of
such an update to q only occurs once every L time-steps.
In this scheme only the samples (x,G(x)) formed within a
block of L successive time-steps are used at the end of that
block by the agents to update their distributions (according
to Eq. 5).

B. Higher order descent schemes

In general, second order descent (e.g., Newton’s method)
of the Maxent Lagrangian is non-trivial, due to coupling that
arises between the agents and the requirement for associated
matrix inversion. An alternative approach starts by making
a quadratic approximation (over the space of all p, not
just all q) to the Maxent Lagrangian, L(p). Via Newton’s
method this specifies a p∗ that minimizes that quadratic
approximation. We can then find the product distribution
that is nearest (in pq KL distance) to p∗. This scheme is
called Nearest Newton descent.

11Formally speaking, the partial derivative is given by ui( j).



The gradient and Hessian of L at a current point p0 are
given by

∂L
∂p(x)

|p=p0 = βG(x) + 1 + ln(p0(x))

∂2L
∂p(x)∂p(x′)

|p=p0 =
δx,x′

p0(x)
.

This Hessian is positive-definite (given that p0 ∈ P). By
simple Lagrange parameters, the (normalized) distribution
that minimizes a paraboloid with this Hessian and gradient
is either on the border of P, or if in the interior is given by

p∗(x) = −p0(x)
[

βG(x) + ln(p0(x)) + λ
]

where λ is set by normalization. Solving, either p∗ is on
the edge of the simplex, or

p∗(x)
p0(x)

= 1 − S (p0) − ln(p0(x)) − β[G(x) − E(G)]

where E(G) is evaluated under p0.
Note that the right-hand side is exactly the same as that

of the direction you should go using (simplex-constrained)
gradient descent of L(p), up to an overall additive vector
that is proportional to ~1. So up to such a vector, the direction
to p∗ from p0 is given by the Hadamard product of p0 and
the direction given by gradient descent.

Now we can approximate p∗ with the product distribution
having the minimal KL distance to it. In particular, consider
using pq KL distance rather than qp KL distance. Recall
that for this kind of KL distance, the optimal product
distribution approximation to a joint distribution is given
by the product of the marginals of that joint distribution
(see the discussion just below Eq. 4). Say that p0 is in the
form of a product distribution, q0, i.e., that we are starting
from a product distribution. Then calculating the marginals
of the associated p∗ to get q∗ is trivial:

q∗
i ( j)

q0
i ( j)

= 1 − S (q0
i ) − ln(q0

i ( j))

− β[E(G | xi = j) − E(G)] (6)

Note that since the original quadratic approximation was
over the full joint space, this formula automatically takes
into account inter-agent couplings. In practice of course, it
may make sense not to jump all the way from q0 to q∗,
but only part-way there, to be conservative. (In fact, if q∗

isn’t in the interior of the simplex, such partial jumping is
necessary.) One potential guide to how far to jump is the
pq KL distance from p∗ to

∏

i q∗
i . Unlike the KL distances

to the full joint Boltzmann distribution, we can readily
calculate this KL distance.

The conditional expectations in Nearest Newton are the
same as those in gradient descent. Accordingly, they too can
be estimated via Monte Carlo sampling, if need be. It’s also
worth noting that Eq. 6 has the same form as one would
get by evaluating the Hessian of the Maxent Lagrangian, so
long as one ignored inter-agent aspects of that Hessian.

C. Practical issues

In practice, the block-wise Monte Carlo sampling to
estimate descent directions described above can be pro-
hibitively slow. The estimates typically have high variance,
and therefore require large block size N to get a good
descent direction. One set of ways to address this is to
replace the team game with a non-team game, i.e., for each
agent i have it estimate quantities E(gi | xi = j) rather than
E(G | xi = j), where each private utility gi is chosen to
have much lower variance than G [13], [17], [12].12

Another useful technique is to allow samples from pre-
ceding blocks to be re-used. One does this by first “aging”
that data to reflect the fact that it was formed under a
different q(i) . For example, one can replace the empirical
average for the most recent block k,

Ĝi, j(k) ,

∑kN+N
t=kN G(xt)δxt

i , j
∑kN+N

t=kN δxt
i , j

with a weighted average over the expected G’s of all
preceding blocks,

∑

m Ĝi, j(m)e−κ(k−m)

∑

m e−κ(k−m)

for some appropriate aging constant κ.13

Typically such aging allows N to be vastly reduced, and
therefore the overall minimization of N to be greatly sped
up. For such small N though, it may be that the most recent
block has no samples of some move xi = j. This would
mean that Ĝi, j(k) is undefined. One crude way to avoid such
problems is to simply force a set of samples of each such
move if they don’t occur of their own accord, being careful
to have the x(i) formed by sampling q(i) when forming those
forced samples. Another alternative is to average over just
those k for which Gi, j(k) exists.

Other useful techniques allow one to properly decrease
the step size as one nears the border of Q.

IV. O L F FM O G

There are many alternative Lagrangians to the ones
described above. The section focuses on such alternative
Lagrangians for the purpose of finding argminxG(x). Two
classes of such Lagrangians are investigated: variants of the
Maxent Lagrangians, and variants of the two types of KL-
distance Lagrangians.

12Formally, this means that each agent i has a separate Lagrangian,
formed from Eq. 1 by substituting gi for G. The associated joint solution
q is then given by substituting the appropriate gi for G in each instance
of the coupled equations Eq. 2 (one instance for each i). See [1] for the
relation of this to bounded rational game theory.

13Not all preceding Ĝi, j(m) need to be stored to implement this;
exponential ageing can be done online using 3 variables per (i, j) pair.



A. Maxent Lagrangians

Say that after finding the q that minimizes the La-
grangian, we IID sample that q, K times. We then take
the sample that has the smallest G value as our guess for
the x that minimizes G(x). For this to give a low x we
don’t need the mean of the distribution q(G) to be low —
what we need is for the bottom tail of that distribution to
be low. This suggests that in the E(G) term of the Maxent
Lagrangian we replace

q(x) ←

q(x)
Θ[κ −

∫

dx′ q(x′)Θ[G(x) −G(x′)]]

κ

where Θ is the Heaviside theta function. This new multiplier
of G is still a probability distribution over x. It equals 0 if
G(x) is in the worst 1−κ percentile (according to distribution
q) of G values, and κ−1 otherwise. So under this replacement
the E(G) term in the Lagrangian equals the average of G
restricted to that lower κ’th percentile. For κ = K−1, our
new Lagrangian forces attention in setting q on that outlier
likely to come out of the K-fold sampling of q(G).

As usual, one can use gradient descent and Monte Carlo
sampling to minimize this Lagrangian, taking care to ac-
count for q’s now appearing twice in the integrand of the
E(G) term. Note that the Monte Carlo process includes sam-

pling the probability distribution
Θ[κ−

∫

dx′ q(x′)Θ[G(x)−G(x′)]]
κ

as
well as the qi. This means that only those points in the
best κ’th percentile are kept, and used for all Monte Carlo
estimates. This may cause greater noise in the Monte Carlo
sampling than would be the case for κ = 1.

As an example, say that for agent i, all of its moves have
the same value of E(G | xi), and similarly for agent j, and
say that G is optimal if agents i and j both make move
0. Then if we modify the updating so that agent i only
considers the best values that arose when it made move 0,
and similarly for agent j, then both will be steered to prefer
to make move 0 to their alternatives. This will cause them
to coordinate their moves in an optimal manner.

A similar modification is to replace G with f (G) in the
Maxent Lagrangian, for some concave nowhere-decreasing
function f (.). This would distort G to accentuate those x’s
with good values. Intuitively, this will have the effect of
coordinating the updates of the separate qi at the end of the
block, in a way to help lower G. The price paid for this
is that there will be more variance in the values of f (G)
returned by the Monte Carlo sampling than those of G, in
general.

Note that if q is a local minimum of the Lagrangian
for G, in general it will not be a local minimum for the
Lagrangian of f (G) (the gradient will no longer be zero
under that replacement, in general). So we can replace G
with f (G) when we get stuck in a local minimum, and then
return to G once q gets away from that local minimum. In
this way we can break out of local minima, without facing
the penalty of extra variance. Of course, none of these

advantages in replacing G with f (G) hold for algorithms
that directly search for an x giving a good G(x) value; x
is a local minimum of G(x) ⇔ x is a local minimum of
f (G(x)).

An even simpler modification to the E(G) term than those
considered above is to replace G(x) with Θ[G(x)−K]. Under
this replacement the E(G) term becomes the probability that
G(x) > K. So minimizing it will push q to x with lower G
values. For this modified Lagrangian, the gradient descent
update step adds the following to each qi(xi):

α
[

βq(G < K | xi) + ln(qi(xi))

−

∑

x′i
βq(G < K | x′i ) + ln(qi(x′i ))

∑

x′i
1

]

.

In gradient descent of the Maxent Lagrangian we must
Monte Carlo estimate the expected value of a real number
(G). In contrast, in gradient descent of this modified La-
grangian we Monte Carlo estimate the expected value of a
single bit: whether G exceeds K. Accordingly, the noise in
the Monte Carlo estimation for this modified Lagrangian is
usually far smaller.

In all these variants it may make sense to replace the
Heaviside function with a logistic function or an expo-
nential. In addition, in all of them the annealing schedule
for K can be set by periodically searching for the K
that is (estimated to be) optimal, just as one searches for
optimal coordinate systems [1], [13]. Alternatively, a simple
heuristic is to have K at the end of each block be set so
that some pre-fixed percentage of the sampled points in the
block go into our calculation of how to update q.

Yet another possibility is to replace E(G) with the
κ’th percentile G value, i.e., with the K such that
∫

dx′ q(x′)Θ(G(x′) − K) = κ. (To evaluate the partial
derivative of that K with respect a particular qi(xi) one must
use implicit differentiation.)

B. KL-based Lagrangians

Both the qp-KL Lagrangian and pq-KL Lagrangians
discussed above had the target distribution be a Boltzmann
distribution over G. For high enough β, such a distribution
is peaked near argminxG(x). So sampling an accurate ap-
proximation to it should give an x with low G, if β is large
enough. This is why one way to minimize G is to iteratively
find a q that approximates the Boltzmann distribution, for
higher and higher β.

However there are other target distributions that are
peaked about minimizers of G. In particular, given any
distribution p, the masked distribution

MΘ(K−G(.))(p)(x) ,
p(x)Θ[K −G(x)]

∫

dx′ p(x′)Θ[K −G(x′)]

is guaranteed to be more peaked about such minimizers than
is p. So our minimization can be done by iterating the pro-
cess of finding the q that best approximates MΘ(K−G(.))(p)
and then setting p = q. This is analogous to the mini-
mization algorithm considered in previous sections, which



iterates the process of finding the q that best approximates
the Boltzmann distribution and then increases β.

For the choice of pq-KL distance as the approximation
error, the q that best approximates MΘ(K−G(.))(p) is just the
product of the marginal distributions of MΘ(K−G(.))(p). So
at the end of each iteration, we replace

qi(xi) ←

∫

dx′(i)q
′(x′(i), xi)Θ[K −G(xi, x′(i))]

∫

dx′ q′(x′)Θ[K −G(x′)]

=
q′(G < K, xi)

q′(G < K)
= q′(xi | G < K)

where q′ is the product distribution being replaced. This can
be Monte-Carlo estimated by agent i using only observed
G values in the usual way. So like gradient descent on
the Maxent Lagrangian, this update rule is well-suited to
a distributed implementation.

Note that if we replace the Heaviside function masking
function with a “softened version” like a logistic function
with exponent β about K, Θ̃β,K(x) , [1 + eβ(G(x)−K)]−1, the
update rule becomes

qi(xi)←
E(Θ̃β,K | xi)q′(xi)

E(Θ̃β,K)
. (7)

Similarly, we can replace the Heaviside function with a
Bolzmann distribution with exponent β, getting the update
rule

qi(xi)←
E(e−βG | xi)q′(xi)

E(e−βG)
. (8)

where both expectations are evaluated under q′, the distribu-
tion that generated the Monte Carlo samples. It’s interesting
to compare this update rule with the parallel Brouwer update
rule for the team game [21], [13], [14], to which it is very
similar. In parallel Brouwer updating, each i adopts the new
distribution q∗

i that would minimize its Maxent Lagrangian
if all other agents did not change their distributions, as
given by Eq. 2.14 This is done simultaneously by all agents.
Now in general, when any qi updates, what distribution
q j is optimal for any j , i will change.15 Accordingly,
a step of parallel Brouwer updating can “thrash”, and not
actually decrease the associated (Maxent) Lagrangian. In
contrast, the update in Eq. 8 is guaranteed to minimize its
associated Lagrangian of pq distance to MΘ(K−G(.))(q′). On
the other hand, since it is based on the pq-KL Lagrangian
to MΘ(K−G(.))(q′) rather than on MΘ(K−G(.))(q′) directly, it is
not clear how minimization of this Lagrangian affects the
ultimate object of interest, E(G). Note also that this update
rule is also very similar to the adaptive importance sampling
of the original pq-KL approach discussed in [13].

14In practice that update is estimated via Monte-Carlo samples, in the
usual way. Accordingly, parallel Brouwer updating update can be viewed
as a variant of empirical best response game-playing.

15This can be partly mitigated by not having each i adopt the exact
distribution q∗

i , but rather jump part way from the current qi to q∗i .

Finally, rather than pq KL distance, consider using qp KL
distance to approximate the Boltzmann-masked distribution,
q′(x) e−βG(x)

∫

dx′ q′(x′)e−βG(x′ ) . Up to an overall additive constant, that
distance is just the Maxent Lagrangian, with one difference:
S (q) → −KL(q || q′). This means the temperature is
effectively 0 in subsequent search. For example, the first
order descent direction for this new Lagrangian, evaluated
at the current point, q′, has components βEq′ (G | xi) for all
i and xi, with no lnqi(xi) term.16

On the other hand, given the current q′, the optimal
solution Eq. 2 changes to

qβi (xi) ∝ q′
i(xi)e

−βE
q
β
(i)

(G|xi)
(9)

where as before q′ is the current distribution. So Brouwer
updating is now different, with the current distribution q′

serving as a prior probability µ (see Eq. 1). Evaluation
of gradients and Brouwer updates for qp KL distance for
a logistic masking function proceeds similarly. (We get
the same formulas, just with G(x) replaced throughout by
ln[1+eβ(G(x)−K)]

β
.)

It is interesting to compare the multiplicative updating
of Eq. 9 with that of Nearest Newton. If we expand the
exponential in Eq. 9 to first order and ignore the ln term of
Nearest Newton (i.e., take temperature to 0, with stepsize
changed accordingly), the two kinds of update become
almost identical. (The remaining difference is that Nearest
Newton normalizes the update to stay in P by adding a
normalizing vector rather than by dividing by a normalizing
scalar.) This connection is not too surprising, in light of the
fact that in the continuum time limit with data-aging, Near-
est Newton and parallel Brouwer updating become identical,
with the stepsize of the Nearest Newton identically equal
to the aging-constant in the parallel Brouwer [12].

V. C

Many problems in adaptive, distributed control can be
cast as an iterated game. The coupling between the mixed
strategies of the players arises as the system evolves from
one instant to the next. This is what the system designer
determines. Information theory tells us that the most likely
joint strategy of the players, given a value of the expectation
of the overall control objective function, is the minimizer
of a particular Lagrangian function of the joint strategy. So
the goal of the system designer is to speed evolution of the
joint strategy to that Lagrangian minimizing point, lower
the expectated value of the control objective function, and
repeat. Here we elaborate the theory of algorithms that do
this using local descent procedures, and that thereby achieve
efficient, adaptive, distributed control.

VI. A

This appendix provides proofs absent from the main text.

16It is interesting to consider having the distribution we wish to mask
not be the current distribution, but rather some previous one. In this case
the descent is based on both the current distribution and the previous one,
i.e., the descent rule gives a second order dynamic system.



A. Derivation of Lemma 1

Proof: Consider the set of ~u such that the directional
derivatives D~u fi evaluated at y′ all equal 0. These are the
directions consistent with our constraints to first order. We
need to find the one of those ~u such that D~uV evaluated at
y′ is maximal.

To simplify the analysis we introduce the constraint that
|~u| = 1. This means that the directional derivative D~uV
for any function V is just ~u · ∇V . We then use Lagrange
parameters to solve our problem. Our constraints on ~u are
∑

j u2
j = 1 and D~u fi(y′) = ~u · ∇ fi(y′) = 0 ∀i. Our objective

function is D~uV(y′) = ~u · ∇V(y′).
Differentiating the Lagrangian gives

2λ0ui +
∑

i

λi∇ f = ∇V ∀i,

where all dependencies on y′ are implicit. The solution is

ui =
∇V −

∑

i λi∇ f
2λ0

.

λ0 enforces our constraint on |~u|. Since we are only in-
terested in specifying ~u up to a proportionality constant,
we can set 2λ0 = 1. Redefining the Lagrange parameters
by multiplying them by −1 then gives the result claimed.
QED.

B. Proof of claims following Lemma 1

For generality, the proofs provided here allow the private
utilities gi to differ from one another. See the discussion in
Section III-C.
i) Define fi(q) ,

∫

dxiqi(xi), i.e., fi is the constraint forcing
qi to be normalized. Now for any q that equals zero for
some joint move there must be an i and an x′i such that
qi(x′i ) = 0. Plugging into Lemma 1, we can evaluate the
component of the direction of steepest descent along the
direction of player i’s probability of making move x′i :

∂L
∂qi(xi)

+ λ
∂ fi

∂qi(xi)
=

βE(gi | xi) + ln(qi(xi))

−

∫

dx′′i [βE(gi | x′′i ) + ln(qi(x′′i ))]
∫

dx′′i 1

Since there must some x′′i such that qi(x′′i ) , 0, ∃xi such that
βE(gi | x′′i )+ ln(qi(x′′i )) is finite. Therefore our component is
negative infinite. So L can be reduced by increasing qi(x′i ).
Accordingly, no q having zero probability for some joint
move x can be a minimum of i’s Lagrangian.

ii) To construct a bounded rational game with multiple equi-
libria, note that at any (necessarily interior) local minimum
q, for each i,

βE(gi | xi) + ln(qi(xi)) =

β

∫

dx(i)gi(xi, x(i))
∏

j,i

q j(x j) + ln(qi(xi))

must be independent of xi, by Lemma 1. So say
there is a component-by-component bijection T (x) ,
(T1(x1),T2(x2), . . .) that leaves all the {g j} unchanged, i.e.,
such that g j(x) = g j(T (x)) ∀x, j 17.

Define q′ by q′(x) = q(T (x)) ∀x. Then for any two values
x1

i and x2
i ,

βEq′ (gi | x
1
i ) + ln(q′

i(x1
i ))

− βEq′ (gi | x
2
i ) + ln(q′

i(x2
i ))

=

β

∫

dx(i)gi(x1
i , x(i))

∏

j,i

q j(T (x j)) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(x2
i , x(i))

∏

j,i

q j(T (x j)))

+ ln(qi(T (x2
i )))

=

β

∫

dx(i)gi(x1
i ,T

−1(x(i)))
∏

j,i

q j(x j) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(x2
i ,T

−1(x(i)))
∏

j,i

q j(x j))

+ ln(qi(T (x2
i )))

=

β

∫

dx(i)gi(T (x1
i ), x(i)))

∏

j,i

q j(x j) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(T (x2
i ), x(i)))

∏

j,i

q j(x j))

+ ln(qi(T (x2
i )))

=

βEq(gi | T (x1
i )) + ln(qi(T (x1

i )))

− βEq(gi | T (x2
i )) + ln(qi(T (x2

i )))

where the invariance of gi was used in the penultimate step.
Since q is a local minimum though, this last difference must
equal 0. Therefore q′ is also a local minimum.

Now choose the game so that ∀i, xi,T (xi) , xi. (Our
congestion game example has this property.) Then the only
way the transformation q → q(T ) can avoiding producing
a new product distribution is if qi(xi) = qi(x′i ) ∀i, xi, x′i , i.e.,
q is uniform. Say the Hessians of the players’ Lagrangians
are not all positive definite at the uniform q. (For example
have our congestion game be biased away from uniform
multiplicities.) Then that q is not a local minimum of the
Lagrangians. Therefore at a local minimum, q , q(T ).
Accordingly, q and q(T ) are two distinct equilibria.

iii) To establish that at any q there is always a direction
along which any player’s Lagrangian is locally convex, fix

17As an example, consider a congestion team game. In such a game all
players have the same set of possible moves, and the shared utility G is
a function only of the k-indexed bit string {N(x, k)}, where N(x, k) = 1 iff
there is a move that is shared by exactly k of the players when the joint
move is x. In this case T just permutes the set of possible moves in the
same way for all players.



all but two of the {qi}, q0 and q1, and fix both q0 and q1

for all but two of their respective possible values, which we
can write as q0(0), q0(1), q1(0), and q1(1), respectively. So
we can parameterize the set of q we’re considering by two
real numbers, x , q0(0) and y , q1(0). The 2 × 2 Hessian
of L as a function of x and y is

( 1
x +

1
a−x α

α 1
y +

1
b−y

)

where a , 1− q0(0)− q0(1) and b , 1− q1(0)− q1(1), and α

is a function of gi and
∏

j,0,1 q j. Defining s , 1
x +

1
a−x and

t , 1
y +

1
b−y , the eigenvalues of that Hessian are

s + t ±
√

4α2 + (s − t)2

2
.

The eigenvalue for the positive root is necessarily positive.
Therefore along the corresponding eigenvector, L is convex
at q. QED.

C. Dependence of Eq(G) on β

i) There are several ways to show that the value of
Eqβi

([gi]i,q(i) ) must shrink as β grows. Here we do so by
evaluating the associated derivative with respect to β.

Define N(U) ,
∫

dy e−U(y), the normalization constant for
the distribution proportional to e−U(y). View the xi-indexed
vector qβi as a function of β, gi and q(i). So we can somewhat
inelegantly write E(gi) = Eqβi (β,gi,q(i)),q(i)

(gi). Then one can
expand

∂E(gi)
∂β

= −
∂2ln(N(β[gi]i,q(i) ))

∂β2

= −Var([gi]i,q(i) )

where the variance is over possible xi, sampled according
to qβi (xi). QED.

ii)In general, there are multiple solutions to Eq. 2, at all
of which ~∇L(q) = ~0. So to analyze the β-dependence of
the expected value of G one has to keep track of each of
those multiple solutions and their separate dependences on
β. This can be quite laborious.

As an alternative, recall from the text that there is a
single fully coupled distribution pβ that minimizes L(p) ,
β(Ep(G) − γ) − S ; this is the optimal p. In addition, as
discussed in the text, the Maxent Lagrangian L(q) is equal
to the Kullback-Leibler distance from q to that optimal p.
So the solutions of Eq. 2 are the q’s that locally minimize
the distance to pβ. So those q’s “track” the distribution pβ

whenever it moves due to a change in β.
Now as shown elsewhere in this appendix, Epβ (G) is

a decreasing function of β. So when we increase β, the
associated solutions of Eq. 2 track pβ as closely as possible
as it lowers its E(G). In this sense, raising β is “equivalent”
to lowering expected G for the solutions to Eq. 2.
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